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Abstract—Estimation of the sintering state has 
importance for clinker quality improvements and the safe 
operation of the rotary kiln. Class imbalanced thermal 
signals usually pose challenges in feature extraction and 
abnormal state recognition. In this paper, a novel 
framework that integrates prior knowledge and hidden 
information is developed for sintering state recognition in 
the class imbalance condition. For discriminative feature 
extraction of imbalanced data, a cascaded stack 
autoencoder (SAE) model is proposed to fuse our prior 
knowledge and hidden information. The model includes a 
feature extraction SAE and a deep fusion SAE: the former 
extracts hidden information from thermal signals, and the 
latter deeply fuses and compresses our prior knowledge 
and hidden information. For the class imbalance of 
sintering samples, we propose a data-dependent kernel 
modification optimal margin distribution machine 
(ddKMODM) as a sintering state recognition model. 
Modifying the original kernel function by a conformal 
function depending on the data distribution in kernel space, 
ddKMODM can change the local volume expansion 
coefficient of the feature space to eliminate the negative 
effects caused by imbalanced samples. Experiments on 
real data show that the proposed framework can balance 
the detection rate of each state in the class imbalanced 
condition, and its overall sintering state recognition 
accuracy exceeds 92%. 

Index Terms—Feature fusion, Imbalance data, Kernel 
modification, Sintering state recognition. 
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I. INTRODUCTION 

otary kilns are a type of large-scale thermal equipment that 

are extensively employed in metallurgical, chemical and 

cement industries for clinker production. To ensure the 

clinker quality and achieve optimal control of the kiln, the 

accurate recognition of sintering states is an urgent issue that 

need to be solved. However, as the kiln generally works in a 

normal state for safety and economic reasons in industrial fields, 

the quantity of process data that are collected in a normal state 

is expected to be larger than that of abnormal states. This class 

imbalance property always makes the extraction of 

discriminate features from process data more challenging [1], 

which further complicates the learning and discrimination 

process of the recognition model [2]. 

In practical applications, the data class imbalance always 

poses some challenges for pattern recognition tasks. In most 

cases, the pattern recognition effect mainly depended on the 

quality of feature extraction [3], the under-represented data of 

the minority class makes the capture of discriminative features 

for pattern classification difficult. Manual features based on 

expert experience are usually adopted in some simple pattern 

recognition tasks [3] but are not suitable for the fields with 

complex mechanisms and lack of prior knowledge. Many 

researchers deemed that by improving the objective function [4] 

of or introducing Laplacian regularization [1] in the deep neural 

networks (DNNs) model, the discriminative hidden 

information of imbalance data can be effectively extracted. In 

the case of a lack of expert experience, these methods may have 

substantial advantages. However, in some pattern recognition 

tasks, describing the patterns merely using deep information 

and disregarding useful prior knowledge accumulated in 

previous research is not prudent. Recently, the fusion of 

multi-features from different domains has been extensively 

utilized in the field of pattern recognition [5-7]. Many research 

results show that the fusion of prior knowledge and deep 

information may improve the separability of features and 

provide a better state description [5-6]. However, no unified 

framework exists for knowledge fusion.  

On the other hand, the existence of class imbalance may cause 

failure of the classification model to learn the distribution of 

minority samples, which deteriorates the classification 

performance [7]. Standard classification models always aim to 

improve the overall classification accuracy. They usually focus 

on the over-represented majority samples, whereas the minority 

class is often the class of interest that needs more attention [2]. 

Various classification models have been proposed for some 
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fault diagnose and pattern recognition tasks in the class 

imbalance condition [7-9]. For example, [10] balances the 

number of samples by oversampling the minority class for fault 

diagnose of induction motors. [11] proposes an ensemble 

kernel extreme learning machine (ELM) for fault diagnosis of 

rotating machinery in the class imbalance condition. Although 

these methods have effectively improved the detection 

accuracy of the minority class in specific fields, they are not 

suitable for direct use as a sintering state recognition model. 

For the application of sintering state recognition, the general 

frameworks of previous research extract useful information 

from process data to train the learning model, directly 

recognize the sintering states [12-14] or estimate other related 

indicators [15-17]. Similarly, these frameworks face difficulties 

in feature extraction and pattern classification due to data 

imbalances. The extracted useful information of process data 

refers to various manual [12-14,18] or hidden features [15-17] 

of flame images and thermal signals. These two kinds of 

features are obtained depending on prior knowledge and the 

DNN model. Usually only one kind of feature is applied to 

describe different sintering states. According to our experience, 

a single type of feature is insufficient for sintering state 

description since it always presents poor separability and may 

deteriorate the performance of subsequent classification models, 

especially in the class imbalance condition. In addition to the 

deficiency in feature extraction, to ensure the economic and 

safe operation of the rotary kiln, more attention should be paid 

to improve the detection rates of abnormal states. Unfortunately, 

in previous research, the standard classifiers for balance data, 

such as the support vector machine (SVM) [14] and ELM [13], 

are simply introduced as a sintering recognition model without 

improvements. Few studies consider the class imbalance issue 

in sintering state recognition systems and design a novel 

classifier for sintering state recognition in the class imbalance 

condition. 
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Fig. 1. Proposed integrated sintering state recognition framework. 

To recognize the sintering state with higher and more 

balanced accuracy, this paper proposes a novel integrate 

framework based on prior knowledge and hidden information 

in the data imbalance condition. This framework, which is 

shown in Fig. 1, includes four modules: thermal signal 

preprocessing, feature extraction (FE), deep fusion (DF) and 

sintering state recognition. Please note that this paper does not 

aim to connect these modules in series but aims to develop a 

novel framework that integrates prior knowledge and hidden 

information for sintering state recognition in the class 

imbalanced condition. The main contribution of this paper is 

described as follows: 

(1) A novel integrate sintering state recognition framework of 

the rotary kiln in the data imbalanced condition based on prior 

knowledge and hidden information is proposed. This is the first 

study to consider the class imbalance issue in a sintering state 

recognition framework. 

(2) For the discriminative feature extraction of imbalanced 

data, a cascaded SAE model is proposed to integrate our prior 

knowledge and deep information of thermal signals. The model 

consists of two parts: FE-SAE and DF-SAE; the former extracts 

hidden information from thermal signals, whereas the latter 

deep fuses our prior knowledge and hidden information and 

compress their volume for the computation efficiency 

improvement of subsequent models. Using this model, the 

obtained fusion features can more comprehensively describe 

different sintering states. 

 (3) Aimed at the class imbalance of sintering samples, a 

newly conformal transformation function that considers the 

data distribution in kernel space is designed to modify the 

kernel matrix of the ODM [19]. Thus, a novel data-dependent 

kernel modified ODM (ddKMODM) is proposed as a sintering 

state recognition model. By introducing this model, the higher 

overall recognition accuracy of the sintering state is achieved, 

and the detection rate of the abnormal state is also improved. 

The remainder of this paper is organized as follows: Section 

II briefly introduces the details of thermal signals analysis. 

Details of FE and DF modules of imbalanced thermal signals 

based on prior knowledge and deep information is also given in 

this section. Section III describes the kernel modification 

methods and presents the ddKMODM model for sintering state 

recognition in the class imbalance condition. Section IV reports 

our experimental results and analysis. The conclusion of this 

work and further research directions are presented in section V. 

II. SIGNAL ANALYSIS AND FEATURE EXTRACTION  

In this section, the thermal signals of the kiln are briefly 

described and analysed, and then a cascaded SAE model is 

constructed for FE and DF of imbalanced thermal signals. The 

main structure of these modules is presented in Fig. 2.  

Input layer
Hidden 

layer 1

Hidden 

layer n-1

Hidden 

layer n

1

cV

2

cV

150

mI Hidden Feature Extraction

N
o

rm
aliza

tio
n

Mean value 

Manual Features Extraction 

Trend feature 

Hidden 

layer 1
Hidden 

layer m

Input 

layer

DF-SAE 

S
in

te
ri

n
g
 s

a
m

p
le

s

KM

KSE

Short-time energy

Sample entropy

Signal Analysis Feature Extraction Deep Fusion and Reduction

cV

rV

pV

mI

RDs

 
Fig. 2. Main structure of signal analysis, FE and DF modules. 

A. Thermal Signals Analysis 

Generally, three common sintering states of the kiln exist: 

normal, chilled and heated. The chilled state and heated state 
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are the two most important abnormal states, which indicate that 

the raw materials are calcined insufficient and excessive, 

respectively. The abnormal states usually cause low-quality 

clinker production and high economic losses. Considering the 

alumina rotary kiln as an example, in the chilled state, the raw 

materials are not melt sufficiently, which causes incomplete 

extraction of metal in subsequent smelting processes. In the 

heated state, the clinker becomes sticky and can easily 

agglomerate, which is not conducive to crushing and smelting. 

Simultaneously, the heated state may damage the refractory 

materials and increase the maintenance cost of a rotary kiln. 

Therefore, for the safe and efficient operations of a rotary kiln, 

accurately recognizing and avoiding these two abnormal states 

is important. 

According to previous research, owing to disturbances, such 

as dust and smoke in the rotary kiln [14], the features of flame 

images may not adequately describe the sintering states. In 

comparison, thermal signals can more comprehensively reflect 

the sintering state of materials in the kiln. The thermal signals 

that are closely related to the sintering state include the coal 

feeding value (Vc), raw material flow (Vr), primary air (Vp), 

negative pressure (Pn), kiln head temperature (Th), kiln tail 

temperature (Tt), main driven current (Im) and flame 

temperature (Tf); their descriptions are presented in Table I. In 

the industrial field, Tf is measured by physical sensors, such as 

thermocouples and pyrometers, and is commonly applied as an 

important indicator to judge the sintering states. However, 

these sensors cannot provide sufficient measurements since 

they can only perform detection at single point or a small area 

of flame. In addition, recognize the sintering state by merely 

relying on Tf is not enough, as the sintering state is closely 

related to many other factors, such as the amount of material 

and the speed of the kiln. Therefore, in this paper, we attempt to 

extract the informatics features of thermal signals to recognize 

the sintering states. 
TABLE I. THERMAL SIGNALS OF ROTARY KILN. 

Signals Description Unit 
PED (4s) 

FRD LRD 

Vc The feed rate of coal powder t/h 15 223 

Vr The feed rate of material t/h 70 276 

Vp The volume of Primary air m3/h 73 100 

Pn negative pressure of Kiln Tail Pa 5 169 
Th Temperature of gas in Kiln Head oC 3 184 

Tt Temperature of gas in Kiln Tail oC 10 125 

Im Current of the main motor oC 43 81 

Tf 
Temperature of flame capture by 

colorimetric pyrometer 
A 67 170 

Before feature extraction, researching the characteristics of 

thermal signals to reduce data redundancy is necessary. Each 

thermal signal is considered to have a particular effect duration 

(PED) in the current sintering state, and the PED can be 

approximated by estimating the correlation between the 

thermal signal and Tf  [15]. In this paper, a model-free Lipschitz 

method [20] is adopted to obtain the PED. This method can 

obtain the last relevant dynamic (LRD) and first relevant 

dynamic (FRD) of the SISO system with a thermal signal as 

input and Tf as output; its details are described in [20]. 

 Since the thermal signals between the LRD and the FRD 

have a strong influence on Tf, the period between the LRD and 

the FRD of each thermal signal is defined as the PED, and the 

thermal data in PED are referred to as related dynamics (RDs) 

in this paper. The PED of each thermal signal is shown in Table 

I. Since the thermal signals that we collect have a 4-sec 

sampling time, the PEDs in Table I are very close to the values 

stated by experts. Consider Vc as an example; the PED means 

that once coal powder is sprayed into the kiln, the flame 

temperature is affected after one minute, and this effect can last 

approximately fifteen minutes.  

B. Feature Extraction and Deep Fusion of Imbalance 
Thermal Signals 

Aimed at the difficulty in the discriminative feature 

extraction of imbalanced data, in this section, both the prior 

knowledge and the hidden information are fully utilized with 

the expectation that the deep fusion of this knowledge can 

improve the separability of sintering samples and recognition 

accuracy of the sintering state. 

1) Manual Feature Extraction Based on Prior Knowledge 
According to our experience, the statistical and dynamic 

features of thermal signals are significant for the recognition of 

sintering states. In this section, the following four features of 

thermal signals in PED are extracted as manual features. 

Mean Value 

The mean value of the RDs of each thermal signal is highly 

correlated with the sintering states. For example, in the chilled 

state, the means of Th and Im are generally lower. Thus, the 

mean values of the RDs are calculated and represented as Mk.  

Trend Feature 

Since the sintering temperature of the kiln changes slowly, 

the energies of most thermal signals are concentrated in the low 

frequency part. Therefore, the trend of thermal signals is 

adopted as a feature of the sintering state. After linearly fitting 

the RDs of each signal channel, we can extract the optimal 

slope to represent the trend feature and denote it as Ak. 

Short-time Energy 

According to expert experience, significant differences exist 

in the stability of thermal signals in different sintering states. 

For example, in the chilled state, the fluctuation of Th is more 

severe than that in other states. Thus, the short-time energies of 

the RDs, which are denoted as Ek, can be extracted as a feature 

for sintering state recognition.  

Sample Entropy 

Similarly, the complexity of the thermal signal is different in 

different sintering states, and the sample entropy of the RDs can 

be calculated to describe it. The sample entropy is sensitive to 

the changes in the complexity of data and can better distinguish 

different sintering states [14]; it is denoted as SEk in this paper. 

The manual feature of each sintering sample is composed of 

four features— k
M , k

A , k
E  and k

SE —of the RDs of each 

thermal signal; it can be written as a feature vector with 32 

dimensions { ,..., ,..., ,..., }
c f c fV T V T

M M SE SE . 

2) Hidden Feature Extraction Based on SAE 
Since the rotary kiln is a complex equipment with nonlinear, 

strong coupling, large delay and time-varying characteristics, 

according to previous research, the manual features based on 

prior knowledge are not enough to describe the information 

contained in thermal signals. The AE is one of the most 

extensively employed deep learning models that have achieved 
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excellent performance in many pattern recognition tasks 

[21-22]. The basic AE is a three-layer neural network, in which 

the output data are employed as the input. The dimension of the 

hidden layer is predominantly lower than that of the input layer 

or output layer, and the decoder uses these low-dimensional 

expressed features to reconstruct the input with the lowest 

reconstruction error [22]. By stacking multiple AEs, the SAE is 

able to adaptively capture the representative information from 

raw data via multiple nonlinear transformations and 

approximate, complex nonlinear functions with a small error.  

In this paper, we construct an SAE model for the hidden 

feature extraction of the RDs. The input of this SAE model is 

the cascaded normalized RDs of each thermal signals, the 

dimension of it is fixed to 1050 according to the definition of 

PED in Table I. A schematic of adaptive feature extraction is 

shown in Fig. 2. Each layer of the SAE is a basic AE that can be 

pre-trained using the output of the previous layer as the input 

and output. In this way, all the hidden layers of the SAE can be 

pre-trained, and the obtained initial weights are suggested to be 

better than those that are randomly assigned [22]. After 

pre-training, the whole model can be fine-tuned using the 

thermal signals with state labels to improve the separability of 

hidden features. The outputs of the last hidden layer are hidden 

features that can be applied for sintering state recognition 

combined with manual features that we previously obtained. 

The hidden layer parameters of this FE-SAE model is 

optimized in experiment section. 

3) Feature Fusion and Reduction 
The useful prior knowledge and hidden information of 

original thermal signals can be represented by the manual and 

the previously extracted hidden features. How to further fuse 

these features and reduce their dimensions to guarantee 

efficient learning and high accuracy recognition is a key issue. 

Some feature fusion models can be adopted to project the 

high-level representation of features to a low-dimension space. 

The most commonly employed models include principal 

component analysis (PCA) [23], t-Distributed Stochastic 

Neighbour Embedding (t-SNE) [24] and linear discriminant 

analysis (LDA) [25]. PCA and t-SNE are unsupervised 

methods, and the computational complexity of t-SNE is too 

high, which is not suitable for sintering state recognition tasks. 

LDA aims to maximize the between-class covariance while 

minimizing the within-class covariance in a supervised way. 

However, the target dimension of LDA is limited by the 

number of the class; finding the optimal dimension of features 

expression may not be necessary. In addition to the previously 

stated methods, some DNNs, such as the restricted Boltzmann 

machine (RBM) [6] and AE [26], are popular tools for deep 

fusion and reduction of features.  

In this paper, we adopt a SAE network to realize deep fusion 

and dimensionality reduction of the extracted sintering state 

features. By introducing a Softmax classifier to fine-tune the 

DF-SAE model, the obtained low-dimension features will be 

highly separable and suitable for sintering state recognition in 

the next step. The hyperparameter of this DF-SAE network will 

be optimized in the experiment section, and the performance of 

the SAE and other methods in feature fusion and reduction will 

be compared in the experimental part. 

III. DDKMODM FOR IMBALANCE CLASSIFICATION 

In the class imbalance condition, a novel classification model, 

which is based on the kernel modification method, is proposed 

in this section to balance the detection rate of each sintering 

state while improving the overall recognition accuracy.  

A. Class Imbalance Classification 

The most extensively employed strategy for the class 

imbalance issue is to balance the influence of each class by 

adopting various oversampling [27] or under-sampling [28] 

techniques to generate balanced training data. However, the 

performance of these methods depends on the structure and 

distribution of training data, the resampling is unavoidable 

introduce noise (over-sampling) or eliminate useful 

information (under-sampling) and cause performance 

degradation of the classifier. The most common cost-sensitive 

methods increase the misclassification penalty for minority 

samples [29-30] or the samples are difficult to classify [8]. The 

cost-sensitive methods are minimize the misclassification costs 

and cannot change the spatial distribution of the training data. 

According to the KKT conditions, some studies indicate that 

increasing the misclassification penalty may not affect the 

Lagrange multiplier  , which determines the weight of the 

influence of the training data on the classifier.  

In addition to the two categories of methods, another way 

exists to eliminate the negative effects of class imbalance. The 

kernel function has a key role in a classifier since it can map the 

linear inseparable training data in the input space into a high 

dimensional kernel space, in which the training data are 

considered to be linear separable. Some research revealed that 

the Riemannian metric of the feature space and the training data 

distribution can be changed via modifying the kernel function 

[9, 31]. These kernel modification technologies were originally 

proposed to improve the generalization performance of a 

classifier [32]. By constructing a conformal function and 

performing conformal transformation of the original kernel 

function, the local volume expansion coefficient (VEC) of the 

area near the initial separator in kernel space can be amplified. 

In this way, the separability of the training data can be 

improved. Furthermore, when the imbalance rate (IR) is 

introduced in the conformal function [7], the area of different 

classes would have different VEC assignments. For instance, 

by magnifying the VEC of the majority class, the influence of 

different classes on the learned separator can be balanced 

effectively [7].  

In general, most kernel modification methods follow these 

steps: 1) apply the standard classifier to training data; 2) 

construct the conformal function according to the results 

obtained in step 1, such as the margin of training data and 

support vectors; and 3) perform the conformal transformation 

of the original kernel function using the obtained new kernel to 

reclassify the training data. The support vectors in step 2 are 

determined by the margin of data. Thus, most of these methods 

can be categorized as margin-based kernel modification 

methods. The main disadvantage of this type of method is that 

the margin of training samples can only be obtained by 

complex algorithm iterations and it cannot adequately reflect 

the spatial distribution of the training samples. 
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B. ddKMODM 

Consider that a conventional classifier, such as the SVM, is 

aimed at optimizing the minimum margin to learn the separator 

[33] and generally yields poor generalization performance. In 

this paper, the multi-class ODM (mcODM) is adopted as a 

robust sintering state recognition model. Compared with the 

SVM, the mcODM optimizes not only the minimum margin but 

also the margin distribution; details are provided in [19].  

For the linear inseparable situation, the mcODM introduces a 

kernel function to map the data into a high-dimensional feature 

space. The kernel function can be denoted as

( , ) ( ) ( )
i j i j

K x x x x  . Using the mapping function  , the 

training data in the input space are embedded into a curved 

Riemannian manifold in the feature space. The Riemannian 

metric is defined as [32]: 

2

'

( , ')
( )ij

i j x x

K x x
g x

x x


 
  
   

                           (1) 

The VEC reflects the volume expansion rate and can be 

written as det( ( ))g x , and the dominant eigenvector of the 

Riemannian metric matrix ( )g x  refers to the principal spread 

direction (PSD). For classification tasks, the generalization 

performance of the classifier and data separability can be 

improved if the VEC is magnified in the heterogeneous region 

and reduced in the homogeneous region. The VEC induced by 

the extensively employed kernels is constant [9]. The 

parameters adjustment of these kernels has very limited ability 

to improve the classification performance. The conformal 

transformation of the kernel function is an effective way to 

modify the kernel function as expected; it can be formulated as:   

( , ') ( ) ( ') ( , ')K x x D x D x K x x                          (2) 

The conformal function ( )D x  is the key factor that 

determines whether the kernel modification is a success. The 

modified kernel can induce a local change of the VEC to finely 

adjust the data distribution in the kernel space for accurate 

classification. Many conformal functions have been proposed 

to handle the imbalance data [7,31-32]. However, most of these 

functions depend on the margin obtained by a pre-trained 

standard classifier. The pre-trained classifier generally 

produces high computation complexity and its results cannot 

adequately reflect the real data distribution. Thus, a novel 

conformal function that depends on the data distribution in the 

kernel space is proposed in this work.  

First, a common kernel is used to map the original data into a 

kernel space, in which the data are approximate linear separable. 

Considering that the data with a small distance from 

heterogeneous data in the kernel space have a high probability 

of being located in overlap regions, we can design the 

conformal function depending on the average distance between 

the target data and the heterogeneous data: 
21

( ) ( )

( )
i

c x ci

N x x
n n

x cD x e
 



 







,                       (3)  

where ix denotes the i-th data, ( )x i is the i-th feature of x, and 

nc and n represent the number of data of class c and the total. N 

is the parameter that reflects the IR of the training data, which 

can be formulated as 

max( )c

c

n
N

n


 

  
 

,                              (4) 

where max( )cn  represents the largest class size; and   is a 

parameter that controls the spatial expansion ratio of different 

regions, which can be selected from the set [0, 0.1, …, 2] 

according to our experience. The average distance between data 
x  in class c and its heterogeneous data in the kernel space can 

be calculated by the kernel trick: 
2

,

( ) ( ) = ( , ) 2 ( , ) ( , )
i i i l

i i i l

x c x c x x c

x x K x x K x x K x x 
  

     .       (5) 

Let us denote 1 2( ) ( ( ), ( ),..., ( ))T

dx D x D x D xu , where 

( )
( )

( )
i

D x
D x

x i





. When the original kernel function is selected 

as 0 'x x
e

  ，according to [9], the VEC and PSD of the new 

kernel modified by ( )D x  can be written as  
2( ) ( ) ( ) 2 ( )T

oD g x u x u x x I ,                    (6)
 

2 1 2 2det( ( )) (2 ( )) (2 ( ) || ( ) || )n

o ox D x D x x  VEC g u ,       (7) 

( ( )) ( )sign D x x PSD u ,                       (8) 

where I is the n × n identity matrix. 

 
(a)                                   (b)                                   (c) 

Fig. 3 Obtained separator and local change in VEC deduced by different 
RBF kernels. (a) RBF kernel; (b) modified kernel without considering 
imbalanced data; (c) modified kernel considering imbalanced data 

Fig. 3 shows the learned separator and local change in the 

VEC deduced by different RBF kernels. As shown in Fig. 3 (a), 

the conventional ODM with RBF kernel changes the VEC in a 

constant way. The learned separator is skewed toward the 

minority class and produces a relatively low detection rate for 

the minority class. However, in Fig. 3 (b) and (c), when the 

proposed ( )D x is adopted to modify the RBF kernel, the VEC 

deduced by the newly obtained kernel is magnified along the 

class boundary, and the PSD vectors point to the class centre. 

Thus, the spatial resolution of the heterogeneous region 

increases, and the homogeneous region is decreased to favour 

the fine classification. For the application of the ODM in the 

class imbalance condition, a smaller VEC of the minority 

samples always pushes the learned separator toward the 

majority class as the classifier tends to optimize the margin 

distribution while minimizing the penalty of misclassification. 

As shown in Fig. 3 (c), by introducing the parameter N to 

reflect the IR of the training data in the conformal function, the 

learned separator is moved toward the majority class. 

The pseudo-codes of the ddKMODM are given in Algorithm 

1. First, the average distance between the training sample and 

its heterogeneous data in the original kernel space is obtained. 

( )D x of each training sample can be achieved using “(3)”, and 

the original kernel matrix K  can be adjusted. The new kernel 

matrix K  is employed to learn the final classifier, which 

produces the ddKMODM. 
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Algorithm 1 ddKMODM 

1: Input: training set train
X with c classes; original kernel matrix K of ODM. 

2: Output: new kernel matrix K ; output classifier ddKMODM. 

3: Function: 

ODMTrain( , )
train

X K : train the ODM model using train
X and K . 

4: Begin 

5: for each training data x of class c  do 

6:   Compute average distance between x and its heterogeneous data in kernel 

space. 

7:    Compute parameter N for class c using “(4)”. 

8:    Compute conformal function using “(3)” . 
9: end for 

10: for each ij
k in K  do 

= ( ) ( )
ij i j ij

k D D kK x x . 

11: end for 

12: Training ODM using new kernel matrix K   

ddKMODM ODMTrain( , )
train

 X K ; 

13: Return ddKMODM 

14: End 

IV. EXPERIMENT ANALYSIS 

To validate the performance of the proposed sintering state 

recognition framework, an online sintering state recognition 

system has been developed for the #3 kiln of the ZhongZhou 

Aluminum Corporation in China to assist kiln operators in state 

recognition and control decision-making. The training of this 

version of the system is offline. In the process of online 

application, only the estimation results of the sintering state are 

provided, the parameters of the model obtained by offline 

training will not be changed dynamically. 
TABLE II. SINTERING SAMPLES EXTRACTED FROM THREE ROTARY KILNS 

 
Rotary kiln 

Total 
#1 #2 #3 

chilled 432 775 302 1509 
heated 469 648 297  1414 

normal 3249 3755 1751 8755 

Total 4150 5178 2350 11678 

The cascaded SAE model shown in Fig. 2 is performed by 

500 epochs, and its batch size is set to 1000. The initial learning 

rate is set to 0.01 based on the trials between 0.001 and 0.02. 

The RELU function is selected as the activation function of the 

SAE, and the parameter optimization for this model is 

performed by an Adam optimizer. The sintering samples are 

extracted without overlap and marked by three kiln experts. In 

our system, the classification model is trained and tested with 

the samples extracted from the history thermal signals with 

4-sec intervals of three rotary kilns. The information of these 

samples is listed in Table II.  
TABLE III. BASELINE RECOGNITION MODEL  

Balance model               mcSVM [33], mcODM [19], Softmax. 

Imbalance 

model 

Resampling based WKSMOTE [27], RBO [28]. 

Cost sensitive based 
AWENSVM [29], BadaCost [30], 

FocalNN [8] 
Kernel based KMODM [7] 

All the experiments described here use cross-validation to 

ensure the generalization performance of the model. Parameters 

optimization of the FE-SAE and DF-SAE use 10-fold 

cross-validation, while other experiments use nested 

cross-validation. When performing nested cross-validation, 

samples of two kilns were selected as the training data and that 

of another kiln were selected as the test data. For the model 

tuning, the 10-fold cross-validation method is still used to 

optimize the model parameters in the inner loop.  
The F1-score and G-mean are adopted as metrics to assess 

the recognition performance of the proposed framework in this 

paper. For performance comparison with the proposed 

ddKMODM, the nine classification models shown in Table III 

were selected as the baseline model. Among them, mcSVM, 

mcODM and Softmax are commonly employed for balance 

classification tasks, and the remaining models are improved for 

imbalanced classification. 

A. Parameters Optimization of FE-SAE and DF-SAE 

TABLE IV. EXPERIMENTAL RESULT COMPARISON WITH DIFFERENT HIDDEN 

LAYER PARAMETERS OF FE- SAE 

Input 
size 

# hidden 
layer 

# hidden nodes F1 score 

1050 

2 500;50 81.78 

2 500;100 81.85 

2 500;200 82.09 

3 500;100;50 83.25 

3 525;263;50 83.19 

3 525;263;100 83.67 

4 525;263;130;25 82.98 

4 525;263;130;50 83.07 

5 525;263;130;50;20 83.13 

5 525;263;130;50;30 82.60 

The structure of the FE-SAE and DF-SAE models have 

importance in the extraction of effective features and achieve 

high performance of the sintering state recognition framework. 

Therefore, some experiments are employed to optimize the 

hidden layer parameters of these two models. 
TABLE V. EXPERIMENTAL RESULT COMPARISON WITH DIFFERENT HIDDEN 

LAYER PARAMETERS OF DF-SAE 

Input 

size 

# hidden 

layer 

# hidden 

nodes 

F1 score 

training testing 

 132  

1 10 85.75 86.17 

1 8 86.28 85.74 

1 5 85.49 85.09 

1 3 86.05 85.26 

2 66;10 88.13 87.60 

2 66;8 87.78 88.05 

2 66;5 87.97 87.62 

3 66;33;10 88.54 88.43 

3 66;33;8 88.95 87.83 

3 66;33;5 89.27 88.79 

3 66;33;3 87.90 87.31 

For the FE-SAE model, the number of input nodes is fixed to 

1050, which is equal to the number of total RDs. The model that 

can offer hidden features with the best recognition accuracy is 

optimal, and then the hidden layer parameters can be selected 

by feeding the obtained hidden feature to a Softmax classifier. 

To demonstrate the influence of the number of hidden layers 

and hidden nodes for the FE-SAE module, the recognition 

accuracies with different hidden layer parameters are listed in 

Table IV. According to these results, three hidden layers with 

525-263-100 nodes are employed as the FE-SAE model. 

The obtained hidden features are combined with manual 

features by a cascade pattern and are sent to the DF-SAE for 

deep fusion and reduction. Thus, the input size of the DF-SAE 

model is determined by the dimensions of the manual and 

hidden features; it can be fixed to 132 in this paper. The way of 

the hidden layer parameters optimization is similar to that of the 

FE-SAE model. The output size of this module determines the 
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dimensions of the sintering samples. The F1 scores of different 

model parameters are recorded in Table V. The F1 score, which 

corresponds to different dimensions of sintering samples, is 

shown in Fig. 4. According to these results, the SAE, which 

includes three hidden layers with 66-33-5 nodes, is selected as 

the DF-SAE. 

 

F
1

 s
co

re

Dimension of SCR samples  
Fig. 4. Selection of the dimension of sintering samples 

In this part, several popular DF models, including PCA, 

LDA and RBM, are selected to compare with the SAE 

regarding the performance in feature fusion and reduction. Fig. 

5 shows the distribution of the F1 score attained by different DF 

models integrated with the ten recognition models shown in 

Table III; each model is tested 10 times. The boxes illustrate the 

distribution range of the F1 score (circles) between the first 

quartile and third quartile. The red solid lines indicate the 

median value; the red cross symbols represent the outliers; and 

the dashed lines represent the outlier range. These DF models 

are ranked as SAE, RBM, LDA and PCA according to the 

average of the F1 score. Although the RBM obtains an average 

value that is close to that of the SAE, it has more outlier points 

as the RBM cannot easily learn an accurate probability 

distribution of training data in the class imbalance condition. 

The feature dimension obtained by LDA is limited by the 

number of class. Obtaining a suitable feature description 

dimension may not be possible since the class number of the 

sintering state is too small. PCA is an unsupervised model, and 

the separability of the obtained features cannot be guaranteed; 

thus, it produces the largest box and also has the maximum 

number of outliers, i.e., the most unstable recognition 

performance. 
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Fig. 5. Distributions of F1 score attained by different DF models. 

B. Parameter Analysis of ddKMODM Model 

In the previous experiments, the optimal parameters of the 

FE-SAE and DF-SAE models have been determined. For the 

optimization of parameter   in the ddKMODM model, in this 

part, the extracted sintering samples are employed to compare 

the recognition accuracy of different  . The training and 

testing accuracy of each sintering state with different   are 

shown in Fig. 6.  

The accuracy of abnormal states generally increases with an 

increase in parameter  , whereas the accuracy of the normal 

state changes in the opposite direction. The main factor of this 

phenomenon is that when  = 0, the ddKMODM does not 

consider the class imbalance issue, which produces lower 

recognition accuracies of abnormal sintering states and lower 

overall F1 scores. With an increase in  , the VEC of the 

majority class increases, while that of the minority class 

decreases. This result causes the learned seperator to move 

toward majority class, which improves the recognition 

accuracy of the abnormal states. From the results displayed in 

Fig. 6, we observe that when  = 1.3, the ddKMODM can 

obtain the highest F1 score, at which time, the recognition 

accuracy of all sintering states are relatively balanced. As a 

result,   is fixed to 1.3 in the following experiments. 
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Fig. 6. Recognition accuracy of each sintering state with different   

C. Analysis of Sintering State Recognition Results 

In this section, a series of experiments are carried out to 

analyse the performance of the proposed framework in various 

aspects, such as recognition accuracy, robustness and 

computational complexity. 

1) Comparison of Recognition Results 
Table VI summarizes the average recognition accuracy of 

each sintering condition obtained by different recognition 

models, and the overall F1-score and G-mean score using 

manual (#M), hidden (#H) and fusion (#F) features are reported. 

As shown in the table, the recognition accuracy of each single 

feature is always lower than that of the fusion feature. For 

example, the F1 score of FocalNN using fusion features reaches 

90.59%, while that of the manual feature and hidden feature is 

at least 4% lower. These results reveal that the proposed 

cascaded SAE model can well integrate our prior knowledge 

and hidden information of imbalanced thermal signals and the 

obtained fusion features can describe the characteristics of 

thermal signals more comprehensively and accurately than a 

single feature.  

In addition, due to the class imbalance of the training 

samples, the mcSVM, mcODM and Softmax obtain a seriously 

imbalanced recognition accuracy of each state, and the 

detection rates of the normal condition are approximately 8% 

higher than those of the abnormal sintering states. However, the 

ddKMODM and other recognition models which consider the 

imbalanced distribution of the training data, can significantly 

improve the recognition accuracy of two abnormal conditions 

and obtain a more balanced detection rate. The FocalNN and 

ddKMODM achieve an overall accuracy of more than 90%, 

and the ddKMODM achieves more than 92% recognition 

accuracy. This finding verifies the effectiveness of the 

Authorized licensed use limited to: Universidade de Macau. Downloaded on July 15,2020 at 02:35:12 UTC from IEEE Xplore.  Restrictions apply. 



0278-0046 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIE.2020.3003579, IEEE
Transactions on Industrial Electronics

IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS 

 

proposed feature extraction method and ddKMODM-based sintering state recognition framework. 
TABLE VI. AVERAGE RECOGNITION ACCURACY (ACCURACY\STANDARD DEVIATION) OF DIFFERENT RECOGNITION MODELS USING DIFFERENT 

FEATURES; THE BEST RESULTS ARE SHOWN IN BOLD. 

 mcSVM mcODM Softmax WKSMOTE RBO BAdaCost KMODM AWENSVM FocalNN ddKMODM 

#M 

heated 81.04\2.5 81.73\1.8 82.62\2.2 83.65\2.7 83.85\2.6 83.73\2.4 84.13\2.8 84.01\2.5 84.24\3.7 85.05\2.5 

chilled 82.49\1.8 82.71\2.4 83.43\2.5 83.54\3.2 83.40\3.1 83.27\2.7 83.81\3.0 83.56\3.9 84.07\2.3 84.36\2.1 

normal 91.14\2.6 91.05\2.1 90.10\2.2 89.67\2.3 90.45\3.9 89.41\2.5 88.65\2.9 90.06\2.7 88.64\3.2 89.87\2.9 

F1  83.58\2.4 83.16\2.6 83.49\2.5 84.44\2.9 83.88\3.2 84.63\2.3 84.70\3.1 84.57\2.9 84.83\3.1 85.88\2.7 

G-mean 82.80\2.3 82.53\2.4 83.27\2.7 83.13\2.6 84.16\3.0 83.40\2.4 85.17\2.8 84.29\3.1 85.09\2.8 86.19\2.5 

           

#H 

heated 83.03\2.7 82.15\2.7 83.75\2.9 84.72\3.3 85.35\3.3 84.87\3.4 84.75\3.1 84.88\2.6 85.34\2.8 87.45\3.0 

chilled 82.47\2.2 83.44\2.6 83.10\2.6 84.16\2.8 83.92\3.7 84.55\2.9 86.01\2.4 85.66\3.3 86.51\3.3 85.94\2.5 

normal 90.43\2.4 89.72\3.0 90.44\1.5 89.76\2.9 89.79\2.8 87.93\3.2 88.56\2.8 88.82\2.9 88.31\31 88.46\2.2 

F1 83.64\3.4 84.05\2.7 84.22\2.5 85.01\3.0 85.21\3.3 85.14\2.6 86.07\2.7 85.50\3.1 86.79\2.9 87.37\2.4 

G-mean 83.42\3.0 84.18\2.5 85.03\2.9 85.49\2.7 85.20\3.0 85.09\3.1 85.71\2.6 85.27\3.3 86.03\3.1 86.51\2.5 

           

#F 

heated 84.89\3.1 85.94\2.1 85.61\2.1 86.52\2.5 87.06\3.4 86.95\2.7 88.04\3.4 87.92\2.6 88.77\2.7 90.80\3.2 

chilled 86.01\3.3 86.51\2.7 85.97\2.5 86.72\3.0 87.28\3.3 87.88\2.8 87.82\3.5 86.80\3.1 89.88\3.2 91.64\3.5 

normal 95.25\2.7 93.93\2.9 94.74\2.0 93.51\2.9 92.70\2.5 92.85\2.4 91.79\2.5 92.57\2.5 91.73\2.9 93.76\2.7 

F1 86.27\2.7 87.16\2.3 85.95\2.5 88.45\2.6 88.79\2.9 89.13\2.6 89.59\3.3 89.74\2.9 90.59\2.9 92.69\3.1 

G-mean 86.91\3.0 87.80\2.7 85.86\3.1 88.10\2.8 87.96\3.1 88.32\2.4 89.10\3.0 88.67\2.8 90.47\2.7 92.40\3.0 

2) Noise Sensitive Analysis 
The thermal signals collected from the rotary kiln are often 

disturbed by noise, which is usually introduced by the sensor or 

electromagnetic environment. In this section, white noise stress 

tests were carried out to demonstrate the robustness and 

effectiveness of the employed methods with different 

signal-to-noise ratio (SNR) values, where the average F1 score 

of the 30 tests were considered to be the final result, as shown in 

Fig. 7.   
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Fig. 7. (a) Average F1 score of different imbalance models using fusion 
feature over different SNR. (b) F1 score of ddKMODM using different 
features over different SNR.   

As shown in Fig. 7(a), the additional noise with different 

SNRs in the thermal signal have a negative impact on the 

sintering state recognition accuracy of different recognition 

models. However, the noise of the same SNR has a similar 

effect on the performance of different models, and the proposed 

ddKMODM can achieve the highest recognition accuracy with 

different SNRs. As shown in Fig. 7(b), the mean value of the F1 

score obtained by different features are connected by a line for a 

better comparison. The larger is the slope of the line, the more 

sensitive the feature is to the noise. In this figure, with an 

increase in the noise ratio, the recognition accuracy obtained by 

the manual features decreases less, while the hidden features 

are larger. As a result, the manual features extracted based on 

prior knowledge have strong anti-noise abilities, and the hidden 

features are more sensitive to noise interference. Regarding the 

benefits to the deep fusion of these features, the noise 

sensitivity of the fusion feature is in the middle. 

3) Imbalance Rate Sensitive Analysis 
To analyse the impact of the IR of the sintering samples on 

the performance of the recognition model, in this section, the 

heated samples are treated as the minority class, and the normal 

and chilled samples are treated as the majority class. By 

randomly undersampling the minority or majority samples, 

nine data sets with different IRs from 1.6 to 16.7 are obtained 

without introducing noise data. Fig. 8 shows the average F1 

scores of different imbalanced models for 10 trials on these data 

sets.  

 
Fig. 8. Average F1 score of different imbalanced models over different 
IRs. 

A comparison of these results reveals that the increase in the 

IR has the greatest impact on the performance of the model 

based on resampling technology, such as WKSMOTE and 

RBO. The oversampling technology that is employed is 

dependent on the data distribution of the minority class, while 

the data sets with greater IR are obtained by randomly deleting 

minority samples, which is detrimental to the implementation 
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of oversampling. The cost-sensitive methods assign different 

penalty factors to samples of different class according to the 

IRs, which enable better robustness to the change in the IR than 

the resampling-based method. The proposed ddKMODM 

method adjusts the VEC of the kernel space by considering the 

distribution and IR of the training data, which changes the 

distribution of the samples in the kernel space and eliminates 

the negative effects of the imbalanced data. Deleting a part of 

the samples that are not located at the class boundary have a 

minimal effect on the VEC of the kernel space; thus, the model 

is the most robust model regarding the change in the IR.  

4) Significant Analysis 
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Fig. 9. CD diagram of the post hoc Friedman test. 

Based on the reported results of different recognition models, 

Fig. 9 shows the critical difference (CD) diagram of the post 

hoc Friedman test with the significance level set to 0.05. The 

ddKMODM has a CD with the six models on the left, which 

means that the ddKMODM obviously outperforms them. On 

the other hand, although the ddKMODM only slightly 

outperforms the FocalNN, KMODM and AWENSVM, its 

overall performance is still better than that of the other models. 

5) Low Operation Risk Analysis 
TABLE VII CONFUSION MATRIX OF DDKMODM AND MCODM. THE 

DATA IN CONFUSION MATRIX ARE THE AVERAGE OF 30 EXPERIMENTAL 

RESULTS.  

  
mcODM ddKMODM 

chilled heated normal chilled heated normal 

#
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#
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#
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chilled 
248 

82.1% 

20 

6.6% 

34 

11.3% 

257 

85.0% 

12 

3.9% 

33 

11.1% 

heated 
19 

4.4% 
248 

83.5% 
30 

10.1% 
12 

4.0% 
260 

87.6% 
25 

8.4% 

normal 
105 

6.0% 

53 

3.0% 

1593 

91.0% 

93 

5.3% 

82 

4.7% 

1576 

90% 

       

chilled 
255 

84.4% 
18 

6.0% 
29 

9.6% 
263 
87% 

11 
3.7% 

28 
9.3% 

heated 
21 

7.0% 

248 

83.5% 

28 

9.5% 

16 

5.4% 

255 

85.9% 

26 

8.7% 

normal 
82 

4.7% 

58 

3.3% 

1611 

92.0% 

90 

5.1% 

94 

5.4% 

1567 

89.5% 

       

chilled 
260 

86.1% 
13 

4.3% 
29 

9.6% 
277 

91.7% 

6 

2.0% 

19 
6.3% 

heated 
13 

4.4% 

259 

87.2% 

25 

8.4% 
4 

1.3% 

278 

93.6% 

15 

5.1% 

normal 
54 

3.0% 
34 

2.0% 
1663 

95.0% 
56 

3.2% 
58 

3.3% 
1637 

93.5% 

The confusion matrixes of the ddKMODM and mcODM 

using different features are shown in Table VII. Adopting our 

fusion features, the ddKMODM achieves a relatively balanced 

recognition accuracy of 91.7%, 93.6% and 93.5% for the three 

different sintering states. Furthermore, as the operations that 

correspond to the two abnormal sintering states are quite 

different, the misjudgement between the chilled state and the 

heated state may cause undesirable consequences. For instance, 

our model misjudges the current heated state as being chilled, 

and subsequent improper operation may cause a higher degree 

of overheating of the rotary kiln and increase its operation risk. 

The higher is the misclassification rate between two abnormal 

states, the higher is the operational risks caused by the 

recognition system.  

The confusion matrix indicates that the ddKMODM not only 

achieves a more balanced detection rate of each class but also a 

misclassification rate of 1.6% between two abnormal sintering 

states. This result is approximately one third of that of the 

mcODM (4.4%). The ddKMODM significantly improves the 

recognition rate of the abnormal states and reduces the 

operational risk deduced by abnormal sintering state 

misclassification. 

6) CPU Time Cost 
Fig. 10 shows the CPU time cost comparison of training 

different recognition models using different features. These 

results can reflect the computational complexity of different 

models to a certain extent. All experiments are performed with 

Matlab2017a on the workstation with 23.3GHz CPUs and 4 

GB main memory. As shown in the figure, since the hidden 

feature has the largest dimension, it consumes the most training 

time, and the fusion feature has the lowest dimension after 

dimensionality reduction; thus, it can substantially decrease the 

training time. Furthermore, a comparison of the time cost of 

different recognition models reveals that the proposed 

ddKMODM is more computationally complex than the balance 

classification model, as its additional processes, such as 

conformal function calculation and kernel matrix modification, 

increase the computational complexity. Compared with other 

imbalanced models, especially WKSMOTE, RBO and 

BAdacost, its advantage of time consumption is obvious. 

Considering that the change in the sintering state in the kiln is 

usually slow, the time cost of the ddKMODM can satisfy the 

requirement of the sintering state recognition system.  

 
Fig. 10. CPU time cost of each recognition model  

D. Industrial application 

The online sintering state recognition system has been 

installed on the #3 kiln and is successfully operating. Fig. 11 

shows the installation locations of the sensors, which collect 

various thermal signals, and the central control room. 
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Fig. 11. Installation locations of sensors (left) and the central control 

room (right). 
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To reduce the complexity, in our experiments, the kiln 

operator merely adjusted Vc (  0.2 each time) to control the 

sintering state, and the operation interval was 2 minutes. Before 

using our system, the operators manually judge the sintering 

states by comprehensively analysing the thermal signals and 

increase or decrease Vc accordingly. After installing our system, 

the operators employ the same strategy to control the kiln based 

on the sintering state recognition results that are automatically 

provided by the system every 2 minutes. 
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  Fig. 12. Fluctuations of thermal signals before and after using our 
system. 

Fig. 12 shows the fluctuations of four main thermal signals 

before and after using our system. These thermal signals 

include Vc, Tf, Th, and Tt. In general, the smoothness of these 

signals indicates whether the control of the rotary kiln is stable. 

As shown in Fig. 8, after using our system, the curves of these 

signals are smoother, and the abnormal sintering states are 

significantly less than previous states. The improvement is 

mainly attributed to the notion that our system can accurately 

predict the sintering state of the rotary kiln to ensure that the 

corresponding operation can be performed in advance to reduce 

the occurrence of abnormal states. 

V. CONCLUSION AND PROSPECT 

This paper proposes an efficient integrated framework for 

sintering state recognition of the rotary kiln in the class 

imbalance condition. For distinguishable features extraction of 

imbalanced thermal signals, a cascaded SAE model is proposed 

to extract hidden information and deep fuse it with our prior 

knowledge. The obtained fusion features have lower 

dimensional expressions and are more separable than single 

features; thus, they can more comprehensively describe 

different sintering states. For the recognition model 

improvements in the class imbalance condition, a novel 

conformal function that depends on the average distance 

between the target data and heterogeneous data is designed to 

modify the kernel function of mcODM, and a newly sintering 

state recognition model, which is named ddKMODM, is 

proposed. The novelty of the ddKMODM is to change the VEC 

of the feature space to eliminate the skewness of the learned 

separator caused by class imbalanced training data. 

The achieved results show that the proposed integrated 

framework efficiently recognizes the sintering states in the 

class imbalance condition and reduces the operation risk caused 

by misclassification between two abnormal states. The 

obtained sintering state recognition results can provide a 

decision basis for the subsequent control system, which is a 

direction of our future research. The training of the proposed 

ddKMODM is offline. The algorithm for training this model 

online is a challenge that we are currently conquering, which is 

very important for the development of a sintering state 

recognition system and even the intelligent control system of a 

rotary kiln. 
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